I'm exploring the possibilities of the Limit
function:
Example 1:
$\lim_{x\to \infty } \, \frac{\sqrt{x-1}}{x}$
Limit[Sqrt[x - 1]/x, x -> Infinity]
0
Example 2:
$\lim_{n\to \infty } \, \frac{(n!)^{1/n}}{n}$
Limit[n!^(1/n)/n, n -> Infinity]
$1/E$
But when I tried to use a summation limit it did not work out:
$\lim_{n\to \infty } \, \left(\sum _{a=1}^n a^{n-a}\right)$
Limit[Sum[a^(n - a), {a, 1, n}], n -> Infinity]
The above idea was to describe this summation:
$1^{10-1}+2^{10-2}+3^{10-3}+4^{10-4}+5^{10-5}+6^{10-6}+7^{10-7}+8^{10-8}+9^{10-9}+10^{10-10}+\text{...}+\infty ^{10-\infty }$
Is it possible to get some numerical result? Maybe using NSolve, Solve ....